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Excitation of electromagnetic wake fields in a magnetized plasma
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We consider propagation of short electromagnetic pulses in a magnetized plasma. A self-consistent system
of equations describing wake-field generation in the weakly nonlinear limit is derived. Due to the external
magnetic field, the generated wake field becomes partially electromagnetic. The equations are applicable for
arbitrary directions of propagation as compared to the external magnetic field. The conservation laws for the
system are discussed in detail. The energy decrease rate and the frequency decrease rate of the short pulse are
determined.@S1063-651X~98!00406-1#

PACS number~s!: 52.35.Mw, 52.40.Db, 52.40.Nk
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I. INTRODUCTION

The interaction of electromagnetic pulses with plasm
can give rise to a large number of phenomena@1–11#. For
weakly nonlinear one-dimensional pulses, the quadratic n
linear terms can generate second-harmonic perturbation
well as low-frequency perturbations. Typically, the secon
harmonic terms in turn affect the evolution of the pulse, le
ing to a cubic nonlinearity of the nonlinear Schro¨dinger type.
During certain circumstances the low-frequency respo
also leads to such a nonlinearity, but it can also lead t
nonlocal response. In particular, a short laser pulse wit
duration of the order of the inverse plasma frequency
shorter generates a low-frequency wake field of plasma
cillations @3,4#. Similarly, microwave sources can genera
energetic electron plasma wake fields in laboratory exp
ments@5#. The large electric fields of the plasma oscillatio
lead to the concept of plasma-based accelerators@3#, which
have shown promising results@6#. The plasma wake field ca
also interact with a second weaker pulse following the fi
leading to frequency up-conversion of that pulse@7,8#.

In the present paper we have investigated the interac
of a short one-dimensional weakly nonlinear electromagn
pulse with plasmas during comparatively general conditio
The pulse is assumed to be short enough such that the
frequency response occurs at the electronic time-scale
thus ion motion has been neglected. Furthermore, the
quency of the pulse is much larger than the plasma
quency. Using a WKB ansatz but keeping correction ter
that are usually neglected, we have derived a set of s
consistent equations valid for propagation at an arbitr
angle to the external magnetic field, taking second-harmo
generation, relativistic effects, and low-frequency wake fi
generation into account. The system of equations exhi
conservation laws for the energy, the number of hig
frequency quanta, and the Hamiltonian of the system, wh
are discussed in some detail. During the propagation thro
the unperturbed plasma, the pulse energy is transferred t
wake field, which is partially electromagnetic, due to t
presence of the external magnetic field. Since the numbe
electromagnetic quanta is conserved, the frequency of
pulse must decrease. However, our equations allow fo
general interaction between the wake field and the elec
571063-651X/98/57~6!/7041~7!/$15.00
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magnetic pulse. This means that wake-field generation b
number of pulses@9# or frequency up-conversion of a sho
pulse situated somewhere in the wake field where the der
tive of the wake-field potential is negative@10# can be de-
scribed. The organization of our paper is as follows. In S
II the derivation of the equation governing the pulse prop
gation is made, starting from the weakly relativistic co
plasma equations. In Sec. III a variational principle and
conservation laws for our system are presented. Section
investigates wake-field generation by a single short pu
which after some approximations leads to concrete exp
sions for the frequency decrease and energy-loss rate o
pulse. In Sec. V we point out some effects that occur due
the presence of the external magnetic field. Finally, the m
results are summarized and discussed in Sec. VI.

II. DERIVATION OF MAIN EQUATIONS

We consider a cold homogeneous magnetized pla
with B05B( x̂ cosu1ẑsinu). A short, one-dimensional high
frequency pulse is propagating in thez direction. We assume
the orderingv@vp ,vc where v is the frequency of the
pulse,vp is the plasma frequency, andvc5qB/mc is the
electron cyclotron frequency. The ratiovp /vc is arbitrary.
Note that Ref.@11# has previously investigated wake-fie
generation in a magnetized plasma without using our
sumptionv@vc . However, that work is limited to electro
static wake fields. Generally, the low-frequency field tur
out to be electromagnetic in our case, making our basic
sumption complementary to that of Ref.@11#. First we note
that for v@vc the influence of the magnetic field will b
limited to the low-frequency perturbations generated by
pulse, as can be verified by examining the cold plasma c
ductivity tensor@12#. In the following we will use the scala
and vector potentials according to

E52¹F2
1

c

]A

]t
, B5B01¹3A,

applying the Coulomb gauge. To lowest linear order we
sume the vector potential of the high-frequency pulse to
given by A5AH(z,t)exp@i(kz2vt)#1c.c., where c.c. stand
for complex conjugate. The polarization is assumed to
7041 © 1998 The American Physical Society
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7042 57GERT BRODIN AND JONAS LUNDBERG
arbitrary, the amplitude is slowly varying in time and spa
as compared to the exp@i(kz2vt)# factor, and the dispersion
relation v25vp

21k2c2 is fulfilled exactly. As can be see
from the calculations below, the scalar potential will have
contribution proportional to exp@i(kz2vt)#, but only low-
frequency and second-harmonic contributions. The ve
potential, on the other hand, will have a low-frequency co
tribution, in addition to the lowest-order expression writt
above, but no second harmonics, to a good approximatio
the parameter regime of consideration. Thus we will hav

A5AL~z,t !1AH~z,t !exp@ i ~kz2vt !#1c.c.,

F5FL~z,t !1FSH~z,t !exp@2i ~kz2vt !#1c.c. ~1!

Naturally, all amplitudes are slowly varying andAL , FL ,
and FSH are second order in the amplitudeAH . IndicesL
andSH will be used for denoting low-frequency and secon
harmonic parts for all variables in what follows.

From Ampère’s law we immediately have

]2F

]z]t
24pqnvz50 ~2!

and

]2A

]t2
2c2

]2A

]z2
24pcqnv'50, ~3!

wheren is the total density including low-frequency as we
as second-harmonic contributions. The index' refers to
components perpendicular to the direction of propagat
Next we must derive an expression for the perpendicu
velocity using the equation of motion. For an unmagnetiz
weakly relativistic cold plasma we have

]v'

]t
1vz

]v'

]z
52

q

mcF]A

]t
1vz

]A

]z G S 12
uv'u2

c2 D 1/2

. ~4!

We emphasize that Eq.~4! cannot be used to derive expre
sions for the evolution of the low-frequency quantities, bu
is valid for the rapidly oscillating parts. The solution for th
velocity is

v'52
qA

mc
1

q3uAu2A

2m3c5
, ~5!

which is correct to third order in the amplitude. Inserting E
~5! into Eq. ~3! and keeping terms up toAH

3 , we obtain

]2A

]t2
2c2

]2A

]z2
1vp

2A1
4pq2

m

3~nL1nSH!A2
vp

2q2

2m2c4
uAu2A50. ~6!

Next we need an equation for the scalar potential. We fi
concentrate on the low-frequency evolution. The perpend
lar component of Ampe`re’s law becomes
o

or
-

in

-

n.
r

d

t

.

st
u-

]2AL

]t2
2c2

]2AL

]z2
24pcqn0vL'50. ~7!

This is the key equation that will lead to a fairly simp
description of the excited low-frequency wave. Genera
we can think of a wave as a superposition of an electrost
part described byFL and an electromagnetic part describ
by AL . What simplifies the picture is that approximately th
electromagnetic part is obeying the same equations as
vacuum and the electrostatic part obeys the same equa
as for an unmagnetized plasma. Furthermore, these part
only weakly coupled. This simplification occurs becausevL'

is small; to be more precise,uvL'u!vLzu even if the parallel
and perpendicular electric fields are comparable in mag
tude. ThatvL' is small can be seen from Eq.~7!. The reason
is that our system is nearly stationary in a frame moving w
the group velocityvg of the high-frequency wave. Since w
have vg'c and ]/]t'vg]/]z, the operator ]2/]t2

2c2]2/]z2 becomes small. The parallel and perpendicu
equations of motion are

]vLz

]t
52

q

m

]FL

]z
1vc~vL'3 x̂! isin u2

q2

2m2c2

]~AH•AH* !

]z
~8!

and

]vL'

]t
52

q

mc

]AL

]t
1

q

mc
~vL3B0!' , ~9!

where the ponderomotive force in Eq.~8! acts as a driver for
the low-frequency perturbations. In Eq.~8! we see that the
only effect of the magnetic field is through the term propo
tional tovL' . Actually, if we neglect this term altogether, w
can use the continuity equation and Gauss’s law to derive
equation for the low-frequency response that is exactly
same as for an unmagnetized plasma. For an unmagne
plasma, the low-frequency response is completely elec
static and accordinglyAL50. However, this would be to
push the approximations to far. From Eq.~9! we see that if
uvL'u is indeed small, we must have

]AL

]t
'~vL3B0!''vz~ ẑ3B!'5 ŷvzB sin u. ~10!

For parameters fulfillingvc sinu@vp , such a balance mean
that the excited wake field is approximately transverse
electromagnetic, rather than electrostatic. This is due to
external magnetic field that clearly cannot be neglected.
resolve this paradox the magnetic correction terms from E
~8! and ~9! must be included when deriving the low
frequency equation. Acting with]/]z on Eq. ~8! and using
the continuity equation followed by Gauss’s law we obta
after integration
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]3FL

]z]t2
1vp

2 ]FL

]z
24pqn0vc~vL'3 x̂! isin u

52
vp

2q

2mc2

]~AH•AH* !

]z
. ~11!

The electrostatic part of the low-frequency perturbat
couples weakly to the electromagnetic part via the last te
on the left-hand side of Eq.~11!. Our next aim is to expres
vL' in terms ofF. We start by eliminatingvz in Eq. ~10!,
using Eq.~2!, and obtaining after integration

AL5
cvc

vp
2

sin u
]FL

]z
ŷ. ~12!

The next step is to substitute Eq.~12! in Eq. ~7!. We then
obtain

vL'5
vc sin u

4pqn0vp
2F ]2

]t2
2c2

]2

]z2G]FL

]z
ŷ. ~13!

Finally, from Eqs.~11! and ~13! we obtain

]2FL

]t2
1vp

2FL1
vc

2 sin2 u

vp
2 F ]2FL

]t2
2c2

]2FL

]z2 G
52

vp
2q~AH•AH* !

2mc2
. ~14!

Next we focus our attention on the second-harmonic te
nSH in Eq. ~6!. We remind ourselves that the external ma
netic field is not of importance at the fast time scale in o
parameter regime. Using the longitudinal momentum eq
tion, the continuity equation, and Gauss’s law, we proce
similarly as when deriving Eq.~14!. The result is

nSH5
vp

2k2AH•AH

8pv2mc2
exp@2i ~kz2vt !#1c.c. ~15!

Using Eq.~15! together with the ansatz~1! in Eq. ~6! we find

22ivS ]AH

]t
1vg

]AH

]z D1
]2AH

]t2
2

]2AH

]z2
1

4pq2nL

m
AH

5
vp

2q2

2m2c4F2~AH•AH* !AH1S 12
k2c2

v2 D ~AH•AH!AH* G ,

~16!

wherevg5kc2/v is the group velocity of the high-frequenc
electromagnetic wave. The last term proportional to
2k2c2/v2 contains the nonlinearities due to secon
harmonic effects and some part of the relativistic contrib
tion. Since 12k2c2/v2!1, however, this term will be omit-
ted from now on.

Next we introduce new coordinates (t,j) moving with
the group velocity, that is,t5t andj5z2vgt. We note that
the evolution is slow in the new frame, such that we c
safely use]/]t!c]/]j. For convenience we omit the sub
m

-
r
a-
d

-
-

n

scriptL from now on and writeF(j,t)5 FL(x,t). Further-
more, we note that for arbitrary polarization of the hig
frequency pulse we can setAH5A(j,t)ê, where ê is a
complex unit vector, i.e.,ê•ê* 51. Equation~14! is then
written as@13#

22
v

k

vpc
2

vp
2

]2F

]j]t
1vg

2 ]2F

]j2
1vp

2F1
vp

2quAu2

mc2
50, ~17!

where vpc
2 5vp

21vc
2sinu. When deriving Eq.~17! a term

proportional to vc
2(c22vg

2)]2F/]j2 has been neglected
This term can be included without difficulty, but only caus
a small frequency shift of the exited wake field and it
therefore omitted. Equation~17! is one of our main equa
tions. Clearly, the low-frequency wake field is express
only in terms of the scalar potential. However, in contrast
the unmagnetized case, the wake field may have a signifi
electromagnetic part, which can be found from Eq.~12!. We
emphasize that forvc sinu@vp , the electromagnetic energ
density of the wake field is much larger than the electrost
energy density.

We are now ready to deduce the final form of Eq.~16!.
Since]/]t!c]/]j, we see that the first term in Eq.~17! is a
small correction. As will be discussed later on, this term is
importance for the long-term evolution of the wake field, b
as a first approximation we can use

vg
2 ]2F

]j2
1vp

2F52
vp

2quAu2

mc2
, ~18!

which together with Gauss’s law gives

nL5
vp

2

4pqvg
2FF1

quAu2

mc2 G . ~19!

Substituting Eq.~19! in Eq. ~16!, changing to moving coor-
dinates, and neglecting derivatives proportional to]2/]t2 we
have@13#

2 i
]A

]t
2

1

k

]2A

]j]t
2

vg8

2

]2A

]j2
1

vp
2q

2vmc2
FA50, ~20!

where vg85dvg /dk is the group dispersion of the high
frequency pulse. The total cubic nonlinearity becomes p
portional tovp

2(c22vg
2)/v2c2 and is therefore omitted. The

system of equations~17! and~20! governing the evolution of
a low-frequency wake field described byF and a short elec-
tromagnetic pulse described byA is the main result of our
paper. Note the presence of the second term in Eq.~20! pro-
portional to ]2A/]j]t, which is a small correction term
since we have]/]t!c]/]j. Although this term is small, it is
important for the long-term evolution since it leads to a v
lation of the conservation lawd/dt* uAu2dj50, as will be
discussed in detail in the next section.



n

y
la

s
l

po

-
ergy

xi-
ser-

it-
tent

is-

ns.
xi-

ia-
of
en
en

in-
he
en
cal
ved
his
hro

e-

ses,

y a
rt

le
ulse

en-

-

en-
n
hift

7044 57GERT BRODIN AND JONAS LUNDBERG
III. VARIATIONAL PRINCIPLE
AND CONSERVATION LAWS

The system of equations~17! and ~20! can be derived
from a variational principle. Introducing the Lagrangian de
sity

L5 ivS A*
]A

]t
2A

]A*

]t D2
v

k S ]A

]j

]A*

]t
1

]A*

]j

]A

]t D
2vvg8U]A

]j U
2

2
v

k

vpc
2

vp
2

]F

]t

]F

]j
1

vg
2

2 S ]F

]j D 2

2
vp

2f2

2

2
vp

2quAu2F

mc2
, ~21!

where the action functional isA(F,A,A* )5*L dj dt ~also
compare the Lagrangian densities given in Ref.@14#!, we
obtain Eqs.~17! and~20! varyingF andA* and minimizing
the action as usual. Since time does not appear explicitl
the Lagrangian, the Hamiltonian will be conserved. Calcu
ing the Hamiltonian density as

H5
]L

]~]A/]t!

]A

]t
1

]L
]~]A* /]t!

]A*

]t
1

]L
]~]F/]t!

]F

]t
2L,

~22!

we find from (d/dt)*H dj50 that

d

dtE2`

` Fvvg8U]A

]j U
2

2
vg

2

2 S ]F

]j D 2

1
vp

2f2

2
1

vp
2quAu2F

mc2 Gdj

50. ~23!

Now it is time to consider two more exact conservation law
By using Eqs.~17! and~20! and making a number of partia
integrations we find

d

dtE2`

` H k2uAu21
ik

2 S A
]A*

]j
2A*

]A

]j D J dj50 ~24!

and

d

dt
@WA1WF#5

d

dtE2`

`

$WA1WF%dj50, ~25!

where

WA5k2uAu21 ikS A
]A*

]j
2A*

]A

]j D1
]A*

]j

]A

]j
~26!

and

WF5
vpc

2

vp
2 S ]F

]j D 2

. ~27!

Since frequency and wave-number conversion are pro
tional, we have

E
2`

`

uEu2dj}E
2`

`

uBu2dj5E
2`

`

WAdj.
-

in
t-

.

r-

ConsequentlyWA in Eq. ~25! corresponds to the pulse en
ergy density, whereas the last term corresponds to the en
density of the wake field. The term (]A/]j)(]A* /]j) inWA

is a small correction that can be omitted within our appro
mation scheme, but it is needed to make the energy con
vation law exact. The terms in Eqs.~17! and~20! that contain
mixed derivatives are small corrections that are usually om
ted. However, note that we cannot obtain a self-consis
conservation law such as Eq.~25! without including those
terms. The significance of the corrections terms will be d
cussed in more detail in Sec. IV.

Generally, conservation laws such as Eqs.~23!–~25! are
important for the understanding of the governing equatio
Furthermore, they can also be useful for analytical appro
mation methods based on the variational principle@15#. The
idea is to chose a trial function with a specified spatial var
tion involving a number of parameters that are functions
time. It is of course necessary to have physical insight wh
choosing what parameters to use. Minimizing the action th
gives ordinary differential or algebraic equations determ
ing the evolution of the parameters in the trial function. T
question of the reliability of the approximate solutions th
arises. An important check that does not involve numeri
calculations is to investigate to what extent the conser
quantities are preserved by the variational solution. T
scheme has been used successfully for the nonlinear Sc¨-
dinger equation@15# and Zakharov’s equations@16#. How-
ever, a similar investigation for our set of equations is b
yond the scope of our paper.

IV. ENERGY AND FREQUENCY DECAY RATE
OF THE HIGH FREQUENCY PULSE

Equations~17! and ~20! allow for a general interaction
between the low-frequency mode and high-frequency pul
provided the evolution is slow in a frame moving withvg .
For example, they can describe wake-field generation b
number of pulses@9# or frequency up-conversion of a sho
pulse situated somewhere in the wake field where]F/]j,0
@10#. However, from now on we will concentrate on a sing
pulse propagating through an unperturbed plasma. The p
is assumed to enter the plasma att50 whenDv50 and the
initial pulse energy is denotedWA0 @'k2*2`

` uA(t50)u2dj#.
We start by considering the frequency conversion rate. G
erally the frequency shift is given by

Dv'cDk5c

E
2`

`

kuAku2dk

E
2`

`

uAku2dk

, ~28!

whereAk5*A exp(ikj)dj. Since we have used a WKB an
satz, we are limited to small frequency shiftsDv!v. As we
will see below, this also implies small changes in pulse
ergy DWA!WA0. Changing the order of integration, we ca
write an equation for the rate of change of the frequency s
as
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dDv

dt
'c

d

dt

E
2`

`

kuAku2dk

E
2`

`

uAku2dk

'c

i
d

dtE2`

` S A
]A*

]j
2A*

]A

]j Ddj

2E
2`

`

uAu2dj

'2
v

WA0

dWF

dt
.

~29!

Before deducing the final expression, a number of appro
mations have been made usingDv/v!1, DWA /WA0!1,
and kL!1, whereL is the characteristic scale length fo
variations in A. The last equality follows from Eqs.~24!
and ~25! if we note that the term proportional t
(]A/]j)(]A* /]j) in Eq. ~25! is a small correction term
Integrating Eq.~29! keeping in mind that the variation in
pulse energy is small, we obtain

Dv

v
52

DWF

WA0
5

DWA

WA0
, ~30!

where the last step follows from the conservation law~25!.
Since the energy of the pulse is proportional toN\(v
1Dv), whereN is the number of high-frequency quanta, w
see from Eq.~30! that N is conserved. Actually, from Ref
@10# we see that within our approximation schem
N is proportional to *2`

` $k2uAu21 ik@A(]A* /]j)
2A* (]A/]j)]/2%dj and thus Eq.~24! is a direct conse-
quence of the conservation of high-frequency quanta.

Next we rewrite the conservation law~25! by dividing the
integration limits according to

d

dtE2`

j1
WFdj1

d

dtEj1

j2
$WA1WF%dj50, ~31!

wherej2 andj1 are stationary points~in the moving frame!
located slightly in front of the pulse and slightly after th
pulse, respectively. The integral from2` to j1 can be per-
formed by lettingd/dt operate inside the integral and usin
Eq. ~17!. Next we note that the low-frequency contribution
the last integral in Eq.~31! is much smaller than the puls
contribution and accordingly the conservation law can
approximated by

d

dtEj1

j2
WAdj52

d

dtE2`

j1
WFdj52

k

2vFvg
2S ]F

]j D 2

1vp
2F2G

j5j1

, ~32!

whereWA is the energy density of the pulse. Thus the loss
pulse energy only depends on the wake-field magnitude a
the pulse passage. Equation~32! can also be obtained b
neglecting the first term of Eq.~17!, using Eq.~18!, which is
a first approximation to Eq.~17!, from the start. Although the
approximation used to obtain Eq.~18! clearly can be justi-
fied, that result is somewhat peculiar. When making the d
i-

e

f
er

i-

vations, we saw that the excited wake field can have a
nificant electromagnetic component@cf. Eq. ~12!#. Actually
for vcsinu@vp , the wake field is approximately transvers
and electromagnetic. Still the low-frequency equation can
approximated by Eq.~18!, which is the same equation as fo
an unmagnetized plasma where the wake field is comple
electrostatic. This paradox will be resolved in Sec. V, whe
the importance of the external magnetic field also will
discussed. At this stage we only note that the energy
frequency decay rates of the high-frequency pulse are u
fected by the external magnetic field to a good approxim
tion and therefore Eq.~18! will be used in the rest of this
section.

In order to simplify our problem, we consider the evol
tion during a comparatively short time, such that the hig
frequency pulse can be taken as constant. During the co
tion that the plasma is unperturbed before the arrival of
pulse, Eq.~18! can be integrated@4# to give

F~j!5
vpq

mc2vg
E

j

j2
uA~j8!u2 sin@kp~j2j8!#dj8. ~33!

The resulting potentials for some specific forms of the pu
are given in Ref.@4#. From Eq.~33! we find that for a short
pulse with pulse length fulfillingkpL!1 we can generally
write F5F0 sin(kpj1d) after the passage of the puls
whered is a phase factor~see Ref.@4# for an expression! and
the amplitudeF0 is given by

F05
vpq

mc2vg
E

j1

j2
uA~j8!u2dj8. ~34!

From Eq. ~34! combined with Eq.~32! the corresponding
frequency and energy decay rates of the high-freque
pulse are

dDv/dt

v
5

dWA /dt

WA
52

q2vp
4

2m2kc4vvg
2Ej1

j2
uA~j8!u2dj8.

~35!

The fact that the energy and frequency decay rates coin
is again a consequence of the conservation of high-freque
quanta.

V. EFFECTS DUE TO THE EXTERNAL
MAGNETIC FIELD

The derivation of the energy and frequency decay ra
made in the preceding section was made by neglecting
effect of the first term in Eq.~17!. Since that term is the only
one containingB0, the effect of the external magnetic fiel
was completely omitted in that calculation. This approxim
tion was possible since the high-frequency pulse couples
rectly only to F ~and not toAL) and furthermore the elec
trostatic and electromagnetic parts of the electric field
only weakly coupled. Still the external magnetic field has
number of consequences for the wake-field properties. F
it is obvious that the electric field is not longitudinal but h
a transverse component that can be found from Eq.~12!.
Clearly, the relative strength of the transverse electrical fi
component to the longitudinal one fulfill
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u]AL /]tu/u]F/]zu5vc sinu/vp . Since the longitudinal field
strength is approximately the same as for an unmagnet
plasma this means that the energy density of the wake fie
amplified by a factorvpc

2 /vp
2 @compare Eq.~27!# due to the

magnetic field. At first one may think that the energy-lo
rate of the high-frequency pulse must be increased by t
but that would be contrary to our results in Sec. IV. T
resolve this paradox and improve our understanding of
wake-field properties we must use Eq.~17! instead of the
approximation given in Eq.~18!. We note that after the puls
passage, Eq.~17! can be solved by a WKB approximation
SubstitutingF5F̃(j,t)exp(ikpj)1c.c. into Eq.~17!, we ob-
tain

]F̃

]t
1Dvg

]F̃

]j
50 ~36!

if the low-frequency wave number fulfillskp5vp /vg . The
group velocity of the wake field in the moving frameDvg is
given by Dvg5vgw f2vg52vgvp

2/vpc
2 , where vgw f

5vg sin2 uvc
2/vpc

2 is the group velocity in the laborator
frame. We note that the finite group velocity~in the labora-
tory frame! is solely due to the external magnetic field. Fur-
thermore, it is clear that the use of Eq.~18! would lead to an
envelope that is stationary in the moving frame, instead
propagating withDvg . The energy contained in the wak
field can roughly be writtenWF5^WF&LF , where angular
brackets denote an average over the wake-field region
LF is the length of the wake field. Furthermore, we c
roughly writeLF52Dvgt ~if the pulse enters the plasma
t50). From the expression forDvg we see that the externa
magnetic field leads to acontraction of the wake field by
factor vpc

2 /vp
2 , as compared to the unmagnetized case. T

exactly compensates for the increased energy density
makes the total energy contained in the wake field indep
dent of B0. Consequently, the energy-loss rate of the hig
frequency pulse is also unaffected by the external magn
field, in agreement with the results in Sec. IV.

Due to propagation of the wake field, an interesting eff
occurs if the external magnetic field is inhomogeneous.
definiteness we consider a magnetic field that is direc
along x̂, hasB5BI constant forz,z1, decreases smoothl
for z1,z,z2, and finally becomeB5BF for z.z2. If we
follow a certain part of the wake field through the inhom
geneous regionz1,z,z2, two effects lead to the increase o
the longitudinal electric field. First, the decrease ofvgw f
means that energy piles up from behind and the total ene
density of the wake field increases. Second, the ratio of
gitudinal energy over transverse energy density for the w
field increases asvp

2/vc
2(z). The combined effect results in

very simple expression for the amplification factorN of the
longitudinal part of the electric wake field

N[
EFL

EIL
5

BI

BF
, ~37!

whereEIL andEFL are the longitudinal electric field ampli
tude before and afterthe wake field has propagatedfrom the
region z,z1 to the regionz.z2. For this amplification
mechanism to work properly, the cyclotron frequency can
ed
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be too small as compared to the plasma frequency. Howe
we suggest that experiments in the microwave regime@5#
should be able to benefit from this idea if an external m
netic field of reasonable strength is included in the exp
mental setup@17#. It would also be of interest to consider th
case where the external magnetic field vanishes forz.z2,
that is,BF50. Naturally, Eq.~37! does not apply anymore
and the saturation of the longitudinal electric field would
determined from mechanisms outside our model, such
thermal motion, nonlinear self-interaction of the wake fie
or two-dimensional effects.

VI. SUMMARY AND DISCUSSION

We have considered propagation of a short electrom
netic pulse in a magnetized plasma. Two self-consist
equations describing the interaction between the pulse a
low-frequency wake field for arbitrary directions of propag
tions ~as compared to the external magnetic field! have been
derived. During the propagation through the unperturb
plasma, the pulse energy is transferred to the wake field
the frequency of the pulse is decreased. Due to our W
ansatz, the description is limited to small changes in f
quency. However, the system is general enough to allow
for frequency up-conversion of a second weak pulse, follo
ing the first strong pulse that has generated the wake fi
Basically, the effect of the external magnetic field is the f
lowing. First, the generated wake field becomes partia
transverse and electromagnetic, as described by Eq.~12!.
The energy density of the wake field in the magnetized c
is larger by a factorvpc

2 /vp
2 as compared to the unmagn

tized case. This magnification is directly attributed to t
additional electromagnetic part of the wake field. Furth
more, the group velocity of the wake field in the laborato
frame becomes appreciable if sin2uvc

2;vp
2 . Propagation of

the wake-field envelope in the laboratory frame leads t
contraction of the wake field by a factorvpc

2 /vp
2 as compared

to the unmagnetized case~for a given time of interaction
with the high-frequency pulse!. The nonzero group velocity
induced by the external magnetic field causes an interes
effect in an inhomogeneous plasma. If the magnetic field
decreasing in the direction of propagation, the longitudi
part of the electric wake field can be significantly amplifi
due to the decreasing group velocity. For sin2uvc

2;vp
2 , the

change in wake-field properties due to the external magn
field should be easy to detect in laboratory experiments.

Our derivation is based on a WKB ansatz. However,
Eq. ~20! we have kept the correction term proportional
]2A/]j]t, which is usually omitted@4,10#. It is necessary to
include this term if we want self-consistent conservati
laws. To be more specific, if we neglect this term and cal
late the energy loss of a high-frequency pulse propaga
through an unperturbed plasma, the result becomes a fac
too large. In addition to energy conservation, the pulse
hibits conservation laws for the Hamiltonian and the num
of high-frequency quanta. Together with the variational pr
ciple, the conservation laws can be useful for analytical
proximation methods@15#. In this paper we have restricte
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ourselves to the qualitative aspects of the pulse propaga
with a specific interest in the frequency decrease and ene
loss rate of the pulse. However, the pulse is also subject
nonlinear modification of shape. The shape modification
cur on a faster time scale than the frequency decrease
energy-loss rate of the pulse@4#. To investigate such effect
detailed solutions of the governing equations must be p
formed. Such studies have been done for equations of a s
lar type to ours@18#, but a thorough investigation of Eqs
~17! and ~20! remains a project for further research.

Finally, we note that Eq.~20! can be rewritten slightly.
The first two terms can be combined according toi ]A/]t
1(1/k)]2A/]j]t5 i @12( i /k)(]/]j)#]A/]t, which means
that Eq.~20! can be written as

2 i
]A

]t
2S 12

i

k

]

]j D 21Fvg8

2

]2A

]j2
2

vp
2q

2vmc2
FAG50.

~38!

Since the second term in the inverse operator is a small
s

.

.

lis
J.

,

s
nd
n,
y-
a
-
nd

r-
i-

r-

rection as compared to the first, that operator can be Ta
expanded to first order, which gives

2 i
]A

]t
2

vg8

2

]2A

]j2
1

vp
2q

2vmc2
FA2 i

vg8

2k

]3A

]j3

1 i
vp

2q

2vmkc2

]

]j
@FA#50, ~39!

where the last two terms are small corrections. The disp
sive correction in Eq.~39! is typically not of much impor-
tance. However, the nonlinear correction is necessary if
should obtain self-consistent conservation laws. We emp
size that all results in Secs. III and IV can be derived fro
Eq. ~39! rather than Eq.~20!, with the difference that some o
the conservation laws become approximate rather than ex
Probably Eq.~39! is easier to implement than Eq.~20! in a
numerical code.
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